Discrete Exterior Calculus Discretization of the Incompressible Navier-Stokes Equations

Mamdouh M. Mohamed (Post-doc, ME, PSE Division)
Ravi Samtaney (ME, PSE Division)
Anil N. Hirani (Dept. of Math, UIUC)

July 30, 2015

Outline

- Motivation.
- Navier-Stokes equations in differential geometry notation.
- Discrete Exterior Calculus.
- 2D discretization of Navier-Stokes equations.
- Numerical examples.
- Conclusion.

Motivation

Fidelity measures of a numerical discretization method.

- Numerical fidelity: convergence and stability indicate how well the mathematics of the PDE are represented by the numerical method.
- Physical fidelity: how well the physics of the system are preserved by the numerical method.
- Preserving the key physical quantities during the numerical solution is important to avoid non-physical numerical artefacts.

Motivation

Key physical quantities to preserve:

- Conservation of primary quantities: mass and momentum.
- Conservation of secondary quantities:[J. Perot, Annu. Rev. Fluid Mech. 2011]
 - Vorticity: Important for turbulence and shallow water simulations
 - Kinetic energy: Important for large-eddy simulation of turbulent flow
 - Entropy: Important for compressible flow simulations.

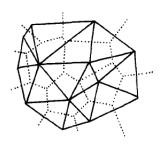
Motivation

Examples of mumerical methods with conservation properties.

- Mass:
 - Finite volume method.
 - Classic finite element method.
 - Discontiuous Galerkin method.
 - Staggered mesh methods on Cartesian meshes.
 - Covolume method on unstructured meshes.
- Vorticity:
 - Staggered mesh methods on Cartesian meshes.
 - Covolume method on unstructured meshes.
- Kinetic energy:
 - Staggered mesh methods on Cartesian meshes.
 - Covolume method on unstructured meshes.

The covolume method

- The covolume method, originally introduced by Nicolaides (1989) and Hall et al. (1991), is a low order method that is free of spurious modes.
- The covolume method convergence was estimated by Nicolaides (1992) to be of second order rate for structured/semi-structured meshes and first order accurate otherwise.



The covolume method

- The local/global conservation properties of the covolume method were later revealed by Perot (2000).
- The conservative behavior of the covolume method is attributed to the discrete differential operators that mimic the behavior of their smooth counterparts.
- The resulting discrete system can be manipulated into discrete conservation statements for key physical quantities.
- The covolume method conserves mass, momentum, vorticity and kinetic energy.

Discrete Exterior Calculus Discretizations

- In computer graphics some the Discrete Exterior Calculus (DEC) approach to simulate incompressible flows.
- The developed discretizations [Elcott et. al (2007) and Mullen et. al (2009)] have similarities with the covolume method, but are applicable on both flat/curved surfaces.
- The convective term is approximated through finite-volume-based or back tracing of characteristics and interpolation schemes.
- Little quantitative analysis of the scheme performance is presented.

Objective

- Use Discrete Exterior Calculus (DEC) to derive a conservative discretization of incompressible Navier-Stokes equations that is applicable for 2D flat/curved and 3D domains with unstructured meshes.
- 2 Conduct quantitative analysis for numerical convergence and conservation.

Navier-Stokes Equations

$$\frac{\partial \mathbf{u}}{\partial t} - \mu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

Using the vector identities:

$$\Delta \mathbf{u} = \nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$$
$$(\mathbf{u} \cdot \nabla)\mathbf{u} = \frac{1}{2}\nabla(\mathbf{u} \cdot \mathbf{u}) - \mathbf{u} \times (\nabla \times \mathbf{u})$$

Define the dynamic pressure: $p^d = p + \frac{1}{2}(\mathbf{u}.\mathbf{u})$

$$\frac{\partial \mathbf{u}}{\partial t} + \mu \nabla \times \nabla \times \mathbf{u} - \mathbf{u} \times (\nabla \times \mathbf{u}) + \nabla p^d = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

Navier-Stokes Equations in Differential Geometry Notation

$$\frac{\partial \mathbf{u}}{\partial t} + \mu \nabla \times \nabla \times \mathbf{u} - \mathbf{u} \times (\nabla \times \mathbf{u}) + \nabla p^d = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

For any vector field \mathbf{u} and a scalar field f:

$$(\nabla \times \nabla \times \mathbf{u})^{\flat} = (-1)^{N+1} * d * d\mathbf{u}^{\flat},$$

$$(\mathbf{u} \times (\nabla \times \mathbf{u}))^{\flat} = (-1)^{N+1} * (\mathbf{u}^{\flat} \wedge * d\mathbf{u}^{\flat}),$$

$$(\nabla \cdot \mathbf{u})^{\flat} = *d * \mathbf{u}^{\flat},$$

$$(\nabla f)^{\flat} = df$$

$$\frac{\partial \mathbf{u}^{\flat}}{\partial t} + (-1)^{N+1} \mu * d * d\mathbf{u}^{\flat} + (-1)^{N+2} * (\mathbf{u}^{\flat} \wedge * d\mathbf{u}^{\flat}) + dp^{d} = 0,$$

$$* d * \mathbf{u}^{\flat} = 0$$

An Alternative Derivation

Starting from Navier-Stokes equation in coordinate invariant form (See Abraham, Marsden, Ratiu, "Manifolds, Tensor Analysis and Applications")

$$\frac{\partial \mathbf{u}^{\flat}}{\partial t} + \mu (\delta \mathbf{d} + \mathbf{d} \delta) \mathbf{u}^{\flat} + \mathbf{\pounds}_{\mathbf{u}} \mathbf{u}^{\flat} - \frac{1}{2} \mathbf{d} (\mathbf{u}^{\flat} (\mathbf{u})) + \mathbf{d} \boldsymbol{p} = 0$$

where δ is the codifferential operator defined as $\delta = (-1)^{N(k-1)+1} * d*$.

Using Cartan homotopy formula:

$$\mathbf{\pounds}_{\mathbf{u}}\mathbf{u}^{\flat} = \mathrm{d}i_{\mathbf{u}}\mathbf{u}^{\flat} + i_{\mathbf{u}}\mathrm{d}\mathbf{u}^{\flat} = \mathrm{d}(\mathbf{u}^{\flat}(\mathbf{u})) + i_{\mathbf{u}}\mathrm{d}\mathbf{u}^{\flat}$$

$$\frac{\partial \mathbf{u}^{\flat}}{\partial t} + \mu \delta d\mathbf{u}^{\flat} + i_{\mathbf{u}} d\mathbf{u}^{\flat} + \frac{1}{2} d(\mathbf{u}^{\flat}(\mathbf{u})) + d\mathbf{p} = 0.$$

An Alternative Derivation: Cont.

$$\frac{\partial \mathbf{u}^{\flat}}{\partial t} + \mu \delta d\mathbf{u}^{\flat} + i_{\mathbf{u}} d\mathbf{u}^{\flat} + \frac{1}{2} d(\mathbf{u}^{\flat}(\mathbf{u})) + dp = 0.$$

- Defining the dynamic pressure 0-form as $p^d = p + \frac{1}{2}(\mathbf{u}^{\flat}(\mathbf{u}))$.
- Substitute with $\delta = (-1)^{N+1} * d*$.
- Substitute for the contraction with [A. Hirani, PhD Dissertation, Caltech (2003)]

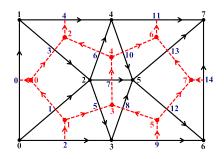
$$i_{\mathbf{x}}\alpha = (-1)^{k(N-k)} * (*\alpha \wedge \mathbf{x}^{\flat})$$

$$\frac{\partial \mathbf{u}^{\flat}}{\partial t} + (-1)^{N+1} \mu * d * d\mathbf{u}^{\flat} + (-1)^{N-2} * (\mathbf{u}^{\flat} \wedge * d\mathbf{u}^{\flat}) + d\mathbf{p}^{d} = 0.$$

Applying the exterior derivative (d) to the above equation

$$\frac{\partial d\mathbf{u}^{\flat}}{\partial t} + (-1)^{N+1} \mu d * d * d\mathbf{u}^{\flat} + (-1)^{N} d * (\mathbf{u}^{\flat} \wedge * d\mathbf{u}^{\flat}) = 0.$$

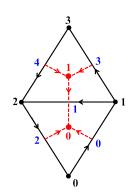
Domain Discretization



- The domain Ω is approximated by the simplicial complex K.
- A k-simplex is denoted by $\sigma^k = [v_0, ..., v_k] \in K$.
- The circumcentric dual to the simplicial complex K is the dual complex *K.
- For a primal k-simplex $\sigma^k \in K$, its dual is an (N-k)-cell denoted by $\star \sigma^k \in \star K$

- The DEC operators (e.g. exterior derivative, Hodge star, wedge product, etc) have the advantage that they satisfy the same rules/identities that characterizes their smooth counterparts.
- Such mimetic behavior of the discrete operators is known to result in preserving the physics implied in the smooth governing equations at the discrete level.

- Discrete differential forms: a discrete form can be thought as the integration of the smooth form over a discrete mesh object; i.e. line, area or volume.
- For example, for the smooth velocity 1-form u^b, its discretization can be defined:
 - on primal edges σ^1 as $v = \int_{\sigma^1} \mathbf{u} \ d\mathbf{l}$.
 - on dual edges $\star \sigma^1$ as $u = \int_{\star \sigma^1}^{\bullet} \mathbf{u} \ d\mathbf{l}$.



The space of discrete k-forms defined on primal and dual mesh complexes is denoted by $C^k(K)$ and $D^k(\star K)$, respectively.

$$C^{0}(K) \xrightarrow{d_{0}} C^{1}(K) \xrightarrow{d_{1}} C^{2}(K)$$

$$\downarrow^{\star_{0}} \qquad \downarrow^{\star_{1}} \qquad \downarrow^{\star_{2}}$$

$$D^{2}(\star K) \xleftarrow{-d_{0}^{T}} D^{1}(\star K) \xleftarrow{d_{1}^{T}} D^{0}(\star K)$$

$$C^{0}(K) \xrightarrow{d_{0}} C^{1}(K) \xrightarrow{d_{1}} C^{2}(K) \xrightarrow{d_{2}} C^{3}(K)$$

$$\downarrow^{\star_{0}} \qquad \downarrow^{\star_{1}} \qquad \downarrow^{\star_{2}} \qquad \downarrow^{\star_{3}}$$

$$D^{3}(\star K) \xleftarrow{d_{0}^{T}} D^{2}(\star K) \xleftarrow{d_{1}^{T}} D^{1}(\star K) \xleftarrow{d_{2}^{T}} D^{0}(\star K)$$

$$\begin{split} \mathbf{d}_0\beta = &\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \\ \mathbf{d}_1 = &\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \end{bmatrix} \\ *_1 = &\begin{bmatrix} \frac{|\star\sigma_0^1|}{|\sigma_0^1|} & 0 & 0 & 0 & 0 \\ 0 & \frac{|\star\sigma_1^1|}{|\sigma_1^1|} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{|\star\sigma_2^1|}{|\sigma_3^1|} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{|\star\sigma_3^1|}{|\sigma_a^1|} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{|\star\sigma_3^1|}{|\sigma_a^1|} \end{bmatrix} \end{split}$$



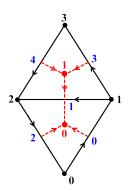
For the discrete wedge product, we use the definition in [Hirani Ph.D. dissertation (2003)] for primal-primal wedge product:

The wedge product between a discrete primal 1-form α and a discrete primal 0-form β defined over a primal edge [0,1] is

$$\langle \alpha \wedge \beta, [0,1] \rangle = \frac{1}{2} \langle \alpha, [0,1] \rangle (\langle \beta, [0] \rangle + \langle \beta, [1] \rangle).$$

The discrete wedge product expression for the whole mesh:

$$\frac{1}{2} \begin{bmatrix}
\alpha_0 & \alpha_0 & 0 & 0 \\
0 & \alpha_1 & \alpha_1 & 0 \\
\alpha_2 & 0 & \alpha_2 & 0 \\
0 & \alpha_3 & 0 & \alpha_3 \\
0 & 0 & \alpha_4 & \alpha_4
\end{bmatrix} \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix}$$



2D Discretization

The discretization of NS equations is carried out here following the exact fractional step method [Hall et. al (1991), Chang et. al (2002)], consisting of two steps:

- The discretization is carried out for the vorticity form of Navier-Stokes equations.
- Substitute the velocity by its definition as the curl of a stream function.

$$\frac{\partial \mathrm{d} \boldsymbol{\mathsf{u}}^{\flat}}{\partial t} + (-1)^{N+1} \mu \mathrm{d} * \mathrm{d} * \mathrm{d} \boldsymbol{\mathsf{u}}^{\flat} + (-1)^{N} \mathrm{d} * \left(\boldsymbol{\mathsf{u}}^{\flat} \wedge * \mathrm{d} \boldsymbol{\mathsf{u}}^{\flat} \right) = 0.$$

$$C^{0}(K) \xrightarrow{d_{0}} C^{1}(K) \xrightarrow{d_{1}} C^{2}(K)$$

$$\downarrow^{*_{0}} \qquad \downarrow^{*_{1}} \qquad \downarrow^{*_{2}}$$

$$D^{2}(*K) \xleftarrow{-d_{0}^{T}} D^{1}(*K) \xleftarrow{d_{1}^{T}} D^{0}(*K)$$

$$\begin{split} -\mathrm{d}_0^T \frac{U^{n+1} - U^n}{\Delta t} + \mu \mathrm{d}_0^T *_1 \mathrm{d}_0 *_0^{-1} \left[-\mathrm{d}_0^T U + \mathrm{d}_b V \right] \\ - \mathrm{d}_0^T *_1 W_v *_0^{-1} \left[-\mathrm{d}_0^T U + \mathrm{d}_b V \right] = 0. \end{split}$$

The discrete representation of the continuity equation is:

$$*_2 d_1 *_1^{-1} U = 0$$

U is in the null space of $[*_2d_1*_1^{-1}]$.

$$[*_2d_1*_1^{-1}][*_1d_0] = *_2d_1d_0 = 0$$

The vector U can uniquely be expressed in terms of the basis $[*_1d_0]$

$$U = *_1 d_0 \Psi$$

$$\begin{split} -\mathrm{d}_0^T \frac{U^{n+1} - U^n}{\Delta t} + \mu \mathrm{d}_0^T *_1 \mathrm{d}_0 *_0^{-1} \left[-\mathrm{d}_0^T U + \mathrm{d}_b V \right] \\ - \mathrm{d}_0^T *_1 W_V *_0^{-1} \left[-\mathrm{d}_0^T U + \mathrm{d}_b V \right] = 0. \end{split}$$

Substitute with $U = *_1 d_0 \Psi$

$$-\frac{1}{\Delta t} \mathbf{d}_0^T *_1 \mathbf{d}_0 \Psi^{n+1} - \mu \mathbf{d}_0^T *_1 \mathbf{d}_0 *_0^{-1} \mathbf{d}_0^T *_1 \mathbf{d}_0 \Psi$$

$$+ \mathbf{d}_0^T *_1 W_v *_0^{-1} \mathbf{d}_0^T *_1 \mathbf{d}_0 \Psi = F.$$

$$F = \frac{1}{\Delta t} \mathbf{d}_0^T U^n - \mu \mathbf{d}_0^T *_1 \mathbf{d}_0 *_0^{-1} \mathbf{d}_b V + \mathbf{d}_0^T *_1 W_v *_0^{-1} \mathbf{d}_b V$$

The linear system is solved in two steps as a predictor-corrector method.

• First, we advance the system explicitly by a half time step

$$\begin{bmatrix} -\frac{1}{0.5\Delta t} \mathbf{d}_0^T *_1 \mathbf{d}_0 \end{bmatrix} \Psi^{n+\frac{1}{2}}$$

$$= F + \left[\mu \mathbf{d}_0^T *_1 \mathbf{d}_0 *_0^{-1} \mathbf{d}_0^T - \mathbf{d}_0^T *_1 W_v^n *_0^{-1} \mathbf{d}_0^T \right] U^n$$

$$\Psi^{n+\frac{1}{2}} \implies U^{n+\frac{1}{2}} = *_1 d_0 \Psi^{n+\frac{1}{2}} \implies W_v^{n+\frac{1}{2}}$$

2 Then solve the linear system semi-implicitly

$$\begin{bmatrix} -\frac{1}{\Delta t} \mathbf{d}_0^T *_1 \mathbf{d}_0 - \mu \mathbf{d}_0^T *_1 \mathbf{d}_0 *_0^{-1} \mathbf{d}_0^T *_1 \mathbf{d}_0 \\ + \mathbf{d}_0^T *_1 W_v^{n+\frac{1}{2}} *_0^{-1} \mathbf{d}_0^T *_1 \mathbf{d}_0 \end{bmatrix} \Psi^{n+1} = F$$

The evaluation of the tangential velocity at $(n + \frac{1}{2})$ was shown [Perot (2000)] to be necessary for kinetic energy conservation.

Conservation Properties: Mass conservation

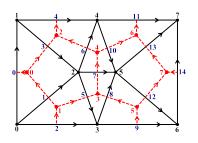
$$U = *_1 d_0 \Psi$$

The discrete continuity equation is:

$$*_2 d_1 *_1^{-1} U = 0$$

$$[*_2 d_1 *_1^{-1}][*_1 d_0] \Psi = *_2 d_1 d_0 \Psi = 0$$

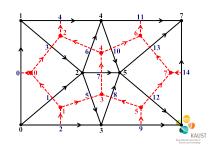
The developed formulation guarantees the mass conservation up to the machine precision, regardless of the error incurred during the linear system solution.



Conservation Properties: Vorticity conservation

$$-\frac{\mathbf{d}_{0}^{T}U^{n+1} - \mathbf{d}_{0}^{T}U^{n}}{\Delta t} + \mu \mathbf{d}_{0}^{T} *_{1} \mathbf{d}_{0} *_{0}^{-1} [-\mathbf{d}_{0}^{T}U] - \mathbf{d}_{0}^{T} *_{1}W_{v} *_{0}^{-1} [-\mathbf{d}_{0}^{T}U] = 0$$
$$-\frac{\mathbf{d}_{0}^{T}U^{n+1} - \mathbf{d}_{0}^{T}U^{n}}{\Delta t} + \mu \mathbf{d}_{0}^{T} [*_{1} \mathbf{d}_{0}X] - \mathbf{d}_{0}^{T} [*_{1}W_{v}X] = 0$$

- The vorticity out-flux from a dual cell boundary is exactly equal to the vorticity in-flux to the neighboring dual cell.
- The vorticity is conserved locally and globally up to the machine precision.

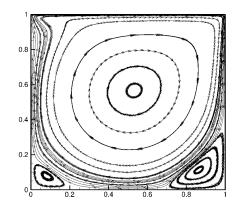


How this discretization is different?

- The discretization is entirely based on the DEC framework.
- The discretization is similar to some of the covolume method discretizations only for the special case of 2D structured triangular mesh on flat domains, but different otherwise.
- Unlike all covolume discretizations, the current discretization is capable of simulating flows over both flat and curved surfaces.

Results: Driven cavity

- The driven cavity flow is simulated at *Re* = 1000.
- The simulations are carried out on a Delaunay mesh and a structured-triangular mesh with 32482 and 32258 elements, respectively → almost the same resolution as a 128 × 128 Cartesian mesh.
- The time step $\Delta t = 0.1$, and the steady solution is attained at almost T = 100.



Results: Driven cavity

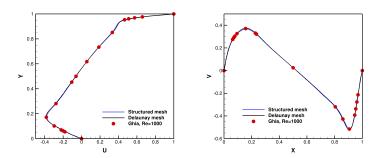


Figure: Cross-section of the steady velocity profile (T = 100) at the two domain center lines for driven cavity test case at Reynolds number = 1000. The simulation results are compared with Ghia (1982).

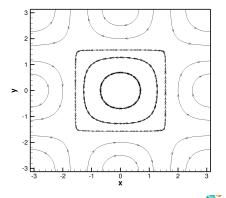
Results: Taylor-Green vortices

 The decay of Taylor-Green vortices with time has an analytical solution that for the 2D case is expressed as

$$u_x = -\cos(x)\sin(y)e^{-2\nu t}$$

$$u_y = \sin(x)\cos(y)e^{-2\nu t}$$

- The simulation is conducted using a Delaunay mesh consisting of 50852 elements, a time step $\Delta t = 0.1$ and kinematic viscosity $\nu = 0.01$.
- Periodic boundary conditions applied on all domain boundaries



Results: Taylor-Green vortices

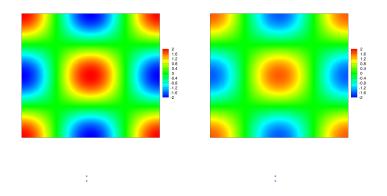


Figure: The vorticity contour plot for Taylor-Green vortices at time (a) T=0, (b) T=10.

Results: Taylor-Green vortices

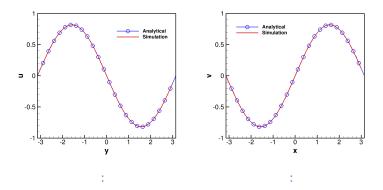


Figure: Cross-section of the velocity x and y-components profile at the two domain center lines for Taylor-Green vortices at time T = 10.

Results: Poiseuille flow

• The Poiseuille flow has a steady analytical solution in a unit square with $\mu=1.0$

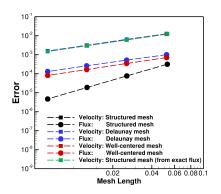
$$u_x = y(1-y), \quad u_y = 0$$

• The L^2 -norm of the velocity 1-form (u) error is calculated according to Hall et al.(1991) as

$$||u^{\mathsf{exact}} - u|| = \left[\sum_{\sigma^1} (u^{\mathsf{exact}} - u)^2 |\sigma^1| \mid \star \sigma^1| \right]^{1/2}$$

The simulation is carried out for structured-triangular,
 Delaunay and well-centered meshes of different resolutions.

Results: Poiseuille flow



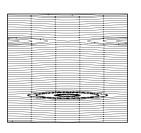
- The velocity 1-form u (flux) convergence is of a second order rate for the structured-triangular mesh case, and with a first order rate unstructured meshes.
- The velocity vector converges in the first order fashion due to its first order interpolation scheme.

Results: Double shear layer

 The initial flow for double shear layer represents a shear layer of finite thickness with a small magnitude of vertical velocity perturbation

$$u_{x} = \begin{cases} \tanh((y - 0.25)/\rho), & \text{for } y \le 0.5, \\ \tanh((0.75 - y)/\rho), & \text{for } y > 0.5, \end{cases}$$

$$u_{y} = \delta \sin(2\pi x)$$



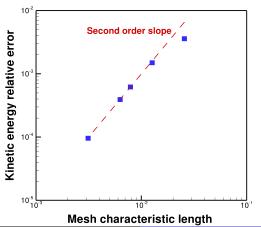
with ρ = 1/30 and δ = 0.05.

- The simulation is carried out for an inviscid flow $(\mu = 0)$.
- Five simulations are conducted using a time step of $\Delta t = 0.001$ on structured-triangular meshes with number of elements equal to 3042, 12482, 32258, 50562 and 204800.
- Periodic boundary conditions applied on all domain boundaries.

Results: Double shear layer

Results: Double shear layer

- The kinetic energy is calculated as $\int_{\Omega} \mathbf{u}.\mathbf{u} \ d\Omega$.
- The relative kinetic energy error $(\frac{\kappa E(0) \kappa E(T)}{\kappa E(0)})$ is calculated at simulation time T = 2.0.

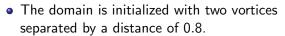


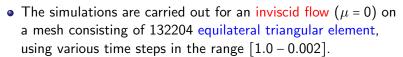
Results: Taylor vortices

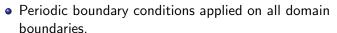
 The vorticity distribution for each Taylor vortex is expressed as [A. McKenzie, PhD Dissertation, CalTech (2007)]

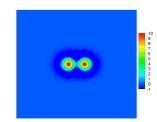
$$\omega(x,y) = \frac{G}{a} \left(2 - \frac{r^2}{a^2} \right) \exp\left(0.5 \left(1 - \frac{r^2}{a^2} \right) \right)$$

with
$$G = 1.0$$
, $a = 0.3$.





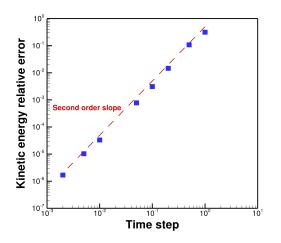




Results: Taylor vortices

Results: Taylor vortices

The relative kinetic energy error $\left(\frac{KE(0)-KE(T)}{KE(0)}\right)$ is calculated at simulation time T=20.0.



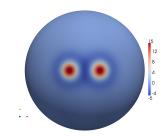
Results: Vortex leapfrogging

Results: Taylor vortices on a spherical surface

 A unit sphere surface is initialized with two vortices, separated by a distance of 0.4, having the distribution

$$\omega(x,y) = \frac{G}{a} \left(2 - \frac{r^2}{a^2} \right) \exp\left(0.5 \left(1 - \frac{r^2}{a^2} \right) \right)$$

with G = 0.5, a = 0.1.

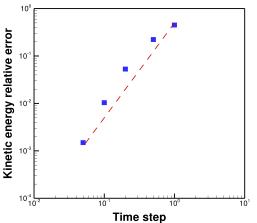


• The simulation is carried out for an inviscid flow ($\mu = 0$) using a mesh containing 327680 triangular elements, with various time steps in the range [1.0 - 0.05].

Results: Taylor vortices on a spherical surface

Results: Taylor vortices on a spherical surface

The relative kinetic energy error $\left(\frac{KE(0)-KE(T)}{KE(0)}\right)$ is calculated at simulation time T=10.0.



- Consider N equidistant point vortices, having the same strength, positioned on a circle with fixed latitude on a spherical surface .[Polvani et. al (1993)].
- It was shown analytically that the vortices will rotate around the z-axis in a stable fashion given that the circle's latitude $\theta < \theta_c$ and the number of vortices $N \le 7$.
- For N = 6, the critical polar angle $\theta_c \sim 0.464$.

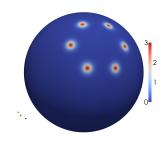
Figure: [Vankerschaver et. al (2014)]

 the point vortices are replaced with vortices having the distribution

$$\omega = \frac{\tau}{\cosh^2(\frac{3r}{a})}$$

with $\tau = 3.0$ to be the vortex strength, a = 0.15 is the vortex radius.

- The vortices are placed on a unit sphere at latitude $\theta = 0.4$.
- The spherical surface is meshed with 81920 elements, and the simulation is conducted for an inviscid flow ($\mu = 0$) with a time step $\Delta t = 0.005$.



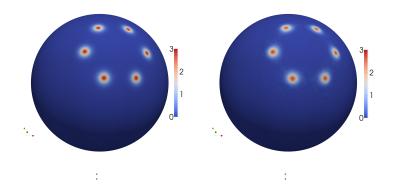
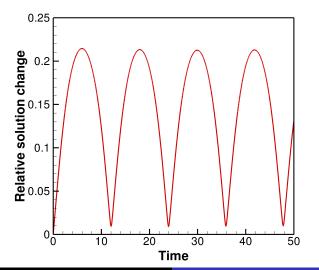
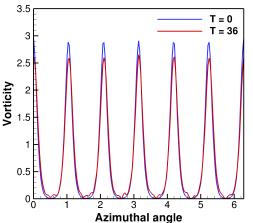


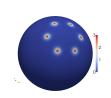
Figure: The vorticity contour plot for 6 vortices on a spherical surface at latitude $\theta = 0.4$ at time: (a) T=0.0 and (b) T=36.0.

The cyclic motion of the vortices can be captured by monitoring the relative solution change $(\frac{\|U(t)-U(0)\|}{\|U(0)\|})$ w.r.t. the initial solution.

The relative solution change $(\frac{\|U(t)-U(0)\|}{\|U(0)\|})$.







The relative change in the kinetic energy at time T=36 is $\frac{KE(T=0)-KE(T=36)}{KE(T=0)}=9.0\times10^{-6}.$

Conclusions

- A conservative discretization for NS equations was derived using DEC.
- The scheme converges with second order for structured/semi-structured meshes, and first order for otherwise unstructured meshes.
- The mass and vorticity were conserved up to machine precision for all conducted test cases.
- The kinetic energy converges with second order with the mesh size and time step for the tested cases on structured/semi-structured meshes.

